当前位置: 首页 > news >正文

怎么样可以做自己的网站深圳vi设计内容

怎么样可以做自己的网站,深圳vi设计内容,免费网页转app,首饰设计网站推荐Hyper-SD: diffusion实时出图#xff0c;一步搞定#xff0c;字节出品 先看效果 Real-Time Generation Demo of Hyper-SD. Abstract 近来#xff0c;一系列面向扩散模型#xff08;Diffusion Models#xff0c;DM#xff09;的迭代紧凑式传播推断算法陆续出现#xf…Hyper-SD: diffusion实时出图一步搞定字节出品 先看效果 Real-Time Generation Demo of Hyper-SD. Abstract 近来一系列面向扩散模型Diffusion ModelsDM的迭代紧凑式传播推断算法陆续出现以解决其中的复杂性问题。目前这些算法常常将方法分为两类一是保持 ODE 流形连续性二是重写 ODE 流形。然而这两种方法在压缩后的执行效果中存在显著问题。因此我们提出了 Hyper-SD 框架通过有机结合以上两类算法的优点并将其应用于压缩后模型的学习从而实现高质量执行。此外我们引入了人工反馈学习以提高在低步长情况下的表现和改进该过程中可能发生的损失。同时还使用了分数学习来进一步改善模型在低步长情况下的输出效果。最后我们采用统一 LoRA 框架将其应用于所有执行过程中的所有步骤。实际上在不同步长下测试时Hyper-SDXL 模型都超越了 SDXL-Lightning并且其在 CLIP Score 和 Aes Score 方面分别提高了 0.68 以及 0.51。 Pipeline 超声速降维算法以两阶段进行连续性极化过程首先在时间段[0,T/2]和[T/2T]上分别对其进行二阶段连续性极化过程得到两个连续性方程之后将这些连续性方程作为训练全局连续性模型的输入 Experiment 对于基于LoRA的Hyper-SD和其他SDXL架构优化方法进行量化比较。 对于 Hyper-SD和其他基于LoRA的加速器架构包括SD15架构进行了性能比较。 Hyper-SD 比现有优先考虑加速器的方法拥有显著的优势并在 SD1.5 和 SDXL 架构上得到了更多用户的青睐。 不同尺度的超透明LoRa在应用于不同基础模型时可以产生高质量图像其步长也是相应变化的。 超宽频LoRA通信模式在超高速数字化(Hyper-SD)中的统一应用与控制网络相容。例子是基于批荡或画笔图像进行的条件性分叉。 权重文件 Hyper-SDXL-Nstep-lora.safetensors: Lora checkpoint, for SDXL-related models. Hyper-SD15-Nstep-lora.safetensors: Lora checkpoint, for SD1.5-related models. Hyper-SDXL-1step-unet.safetensors: Unet checkpoint distilled from SDXL-Base. 文生图模式 SDXL-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 2-steps LoRA, 可自行设置其他LoRA. import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD # Take 2-steps lora as an example ckpt_name Hyper-SDXL-2steps-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) # lower eta results in more detail prompta photo of a cat imagepipe(promptprompt, num_inference_steps2, guidance_scale0).images[0]Unified LoRA (support 1 to 8 steps inference) 可以灵活调整推理步数 以及 eta value 达到最佳效果. import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SDXL-1step-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, etaeta).images[0]1-step SDXL Unet 单步推理. import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SDXL-1step-Unet.safetensors # Load model. unet UNet2DConditionModel.from_config(base_model_id, subfolderunet).to(cuda, torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), devicecuda)) pipe DiffusionPipeline.from_pretrained(base_model_id, unetunet, torch_dtypetorch.float16, variantfp16).to(cuda) # Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs pipe.scheduler LCMScheduler.from_config(pipe.scheduler.config) # Set start timesteps to 800 in the one-step inference to get better results prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, timesteps[800]).images[0]SD1.5-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 2-steps LoRA import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id runwayml/stable-diffusion-v1-5 repo_name ByteDance/Hyper-SD # Take 2-steps lora as an example ckpt_name Hyper-SD15-2steps-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) prompta photo of a cat imagepipe(promptprompt, num_inference_steps2, guidance_scale0).images[0]Unified LoRA (support 1 to 8 steps inference) 可以灵活调整推理步数 以及 eta value 达到最佳效果. import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id runwayml/stable-diffusion-v1-5 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SD15-1step-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, etaeta).images[0]ControlNet 模式 SDXL-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 Canny Controlnet 以及 2-steps 推理: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, DDIMScheduler from huggingface_hub import hf_hub_download# Load original image image load_image(https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png) control_weight 0.5 # recommended for good generalization# Initialize pipeline controlnet ControlNetModel.from_pretrained(diffusers/controlnet-canny-sdxl-1.0,torch_dtypetorch.float16 ) vae AutoencoderKL.from_pretrained(madebyollin/sdxl-vae-fp16-fix, torch_dtypetorch.float16) pipe StableDiffusionXLControlNetPipeline.from_pretrained(stabilityai/stable-diffusion-xl-base-1.0, controlnetcontrolnet, vaevae, torch_dtypetorch.float16).to(cuda)pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SDXL-2steps-lora.safetensors)) # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) pipe.fuse_lora() image pipe(A chocolate cookie, num_inference_steps2, imagecontrol_image, guidance_scale0, controlnet_conditioning_scalecontrol_weight).images[0] image.save(image_out.png)Unified LoRA (support 1 to 8 steps inference) 使用 Canny Controlnet: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, TCDScheduler from huggingface_hub import hf_hub_download# Load original image image load_image(https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png) control_weight 0.5 # recommended for good generalization# Initialize pipeline controlnet ControlNetModel.from_pretrained(diffusers/controlnet-canny-sdxl-1.0,torch_dtypetorch.float16 ) vae AutoencoderKL.from_pretrained(madebyollin/sdxl-vae-fp16-fix, torch_dtypetorch.float16) pipe StableDiffusionXLControlNetPipeline.from_pretrained(stabilityai/stable-diffusion-xl-base-1.0,controlnetcontrolnet, vaevae, torch_dtypetorch.float16).to(cuda)# Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SDXL-1step-lora.safetensors)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 image pipe(A chocolate cookie, num_inference_steps4, imagecontrol_image, guidance_scale0, controlnet_conditioning_scalecontrol_weight, etaeta).images[0] image.save(image_out.png)SD1.5-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 Canny Controlnet 以及 2-steps 推理: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DDIMSchedulerfrom huggingface_hub import hf_hub_downloadcontrolnet_checkpoint lllyasviel/control_v11p_sd15_canny# Load original image image load_image(https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png)# Initialize pipeline controlnet ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtypetorch.float16) pipe StableDiffusionControlNetPipeline.from_pretrained(runwayml/stable-diffusion-v1-5, controlnetcontrolnet, torch_dtypetorch.float16).to(cuda) pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SD15-2steps-lora.safetensors)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) image pipe(a blue paradise bird in the jungle, num_inference_steps2, imagecontrol_image, guidance_scale0).images[0] image.save(image_out.png)Unified LoRA (support 1 to 8 steps inference) 使用 Canny Controlnet : import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, TCDScheduler from huggingface_hub import hf_hub_downloadcontrolnet_checkpoint lllyasviel/control_v11p_sd15_canny# Load original image image load_image(https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png)# Initialize pipeline controlnet ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtypetorch.float16) pipe StableDiffusionControlNetPipeline.from_pretrained(runwayml/stable-diffusion-v1-5, controlnetcontrolnet, torch_dtypetorch.float16).to(cuda) # Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SD15-1step-lora.safetensors)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 image pipe(a blue paradise bird in the jungle, num_inference_steps1, imagecontrol_image, guidance_scale0, etaeta).images[0] image.save(image_out.png)
http://www.laogonggong.com/news/130741.html

相关文章:

  • 美声广告网站建设刚刚大连发生了大事
  • 威县网站建设报价钓鱼网站排名假冒建设银行最多
  • 网站修改用什么工具外贸网站推广优化
  • 可以做微信游戏的网站有哪些域名申请好了 怎么做网站
  • 赶集门户网站建设方案做网站要学些什么软件
  • 山东省住房和城乡建设厅证件查询宁波seo推广方式排名
  • 太原网站制作企业门户网站建设招标书
  • 阿里云服务器做网站django大学毕业网站设计代做
  • wordpress 破解沈阳网站推广优化公司哪家好
  • wordpress 整站带数据做一个网站要注意什么
  • 免费网站奖励自己的软件莱芜在线广告信息
  • 苏州网站建设制作网络公司晋中企业网站建设公司
  • vue 做门户网站深圳苏州旅游网站建设服务
  • 在一呼百应上做网站行吗家具电商网站建设
  • vue.js网站开发用例内蒙古呼和浩特网站建设
  • 綦江中国建设银行官网站做网站销售药品
  • 个人网站设计作品展示wordpress标签设置
  • 自己做网站怎么发布免费网络电话排行
  • 化妆品网站优化dede更新网站
  • 网站流量统计 设计电商平台网站定制
  • 高端的镇江网站建设wordpress有商城吗
  • 上海网站模板phpcms手机网站模板
  • 九江做网站的推广公司名称
  • 深圳的网站建设公司的分类是中国建设银行官方网站汇率
  • 网站地图怎么提交网站网页设计怎么报价
  • 网站系统维护一般多久想要网站导航推广
  • 搜索引擎的网站推广方式北京网站优化seo
  • 张家港做网站哪家好企业网站建设_秒搜
  • 深圳做网站好的公司wordpress等级
  • 做网站一个月工资网络营销外包是干啥的