当前位置: 首页 > news >正文

网站标题和描述优化谷歌seo外链平台

网站标题和描述优化,谷歌seo外链平台,专门做护理PDCA的网站,公司网站建设包括哪些东西1、:前提知识 KNN算法是机器学习算法中用于分类或者回归的算法,KNN全称为K nearest neighbour(又称为K-近邻算法) 原理:K-近邻算法采用测量不同特征值之间的距离的方法进行分类。 优点:精度高 缺点&…

1、:前提知识

  • KNN算法是机器学习算法中用于分类或者回归的算法,KNN全称为K nearest neighbour(又称为K-近邻算法)

  • 原理:K-近邻算法采用测量不同特征值之间的距离的方法进行分类。

  • 优点:精度高

  • 缺点:时间和空间复杂度高

  • K近邻算法思想:有N个样本分布在m个类别中,要判定第x个样本为什么类别,就要求出x到N个样本每个样本的距离集合,从中找出K个最近的样本,然后通过k个样本的比例判断x所属类别,例如在k个样本中第一类占比较多,就判定x是第一类数据。注意:计算x到N个样本之间的距离方法有两种,第一种是曼哈顿距离,第二种是欧式距离,他们的计算如下:
    在这里插入图片描述
    可以看出,曼哈顿距离计算复杂度较低,计算速度快。

  • 实现方法:基于谷歌公司开发的第三方python库sklearn

  • 实现步骤:

    • 1、导入numpy、pandas、matplotlib、from sklearn.neighbors import KNeighborsClassifier第三方库
    • 2、导入原始数据(导入数据后可以通过散点图进行数据可视化简单了解下数据)
    • 3、将数据划分为训练数据(x_train、y_train)和测试数据(x_test、y_test),注意:在KNN中输入数据x为二维数据,输出数据y为一维数据。(注意:二维数据代表数据只能有行和列两个维度,但x可以有多个,x也叫做特征)
    • 4、设定KNN算法参数,引入KNN模型
    • 5、通过fit函数输入训练数据,训练KNN模型
    • 6、通过测试数据测试KNN模型
    • 7、计算模型准确率

2、案例:

  • 我有一份原始数据,数据中有两个变量,分别为“武打镜头”和“接吻镜头”,通过这两个变量可以判断这部影片为动作片还是爱情片,规则就是:武打镜头大于接吻镜头为动作片,武打镜头小于接吻镜头为爱情片,原始数据如下:
    在这里插入图片描述
  • 代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 导入KNN分类库
from sklearn.neighbors import KNeighborsClassifier# 1、导入数据
movie = pd.read_excel('./tests.xlsx',sheet_name="Sheet2")
# 2、数据可视化
plt.scatter(movie.loc[:,'武打镜头'],movie.loc[:,'接吻镜头'])
plt.show
# 3、训练数据赋值,x(二维)、y(一维)
x_train = movie.loc[:,['武打镜头','接吻镜头']]
y_train = movie.loc[:,'分类情况']
print(type(x_train),type(y_train))
# 4、设置KNN参数(近邻数量为5,距离计算方法为曼哈顿),引入KNN模型
KNN = KNeighborsClassifier(n_neighbors=5,p=1)
# 5、训练模型
KNN.fit(x_train,y_train)
# 6、设置测试数据测试训练完的KNN模型
x_test = np.array([[30,2],[3,36],[2,15],[30,2]])
y_test = np.array(['动作片','爱情片','爱情片','动作片'])
y_pred = KNN.predict(x_test)
print(y_pred)
# 7、计算测试集准确率(accuracy)
KNN.score(x_test,y_test)

3、鸢尾花分类任务实战:

  • 1、学习sklearn中自带的数据集调用方法
    • 导入鸢尾花数据集:from sklearn.datasets import load_iris(同过tab键代码补齐的方法就能靠大概记忆输入此行代码)
    • 使用数据集:load_iris(),如下所示为调用结果,结果为字典形式,其中data为数据键,对应的值为array二维数组(150行*4列),其中第一列特征为花萼的长度(sepal length (cm)),第二列特征为花萼的宽度’sepal width (cm)‘,第三列特征为花瓣的长度’petal length (cm)’,第四列特征为花瓣的宽度 ‘petal width (cm)’。target键对应的为150组数据对应的分类标签,其中0代表’setosa’鸢尾花,1 代表’versicolor’鸢尾花, 2代表’virginica’鸢尾花。其他键表示的就是一些数据集的相关信息。
  • 2、通过字典调用方式获取数据集中的相关数据,再根据pandas或者numpy处理数据。
# 获取输入数据
data = s_data['data']
pd.DataFrame(data)
# 获取输出数据
target = s_data['target']
  • 3、将数据集划分为训练数据和测试数据(使用sklearn库中model_selection模块中的train_test_split函数)
# 导入sklearn自带的切分训练数据和测试数据的包
from sklearn.model_selection import train_test_split# 将数据切分为训练集输入、训练集输出、测试集输入、测试集输出
# test_size的参数如果是整数就会从所有数据中取多少条作为测试数据
# test_size的参数如果是0~1的小数就会从所有数据中按比例取多少条作为测试数据
# random_state参数可以让每次数据切分都一样
x_train, x_test, y_train, y_test = train_test_split(data,target,test_size=10)
  • 4、导入KNN模型,训练数据,并测试分类效果
# 获取KNN算法
KNN = KNeighborsClassifier()
# 训练KNN算法
model = KNN.fit(x_train,y_train)
# 测试模型分类效果
model.predict(x_test)
print(y_test)
# 计算分类准确度
model.score(x_test,y_test)

4、补充

  • 1、DataFrame数据可以直接用matplotlib中的plot画出数据的折线图,下面的例子是画出鸢尾花数据集的特征数据折线图
s_data = load_iris()
# 获取输入数据
data = s_data['data']
data = pd.DataFrame(data,columns=s_data['feature_names'])
# 用DataFrame直接画图查看数据集
data.plot()

在这里插入图片描述

  • 2、绘制分类分界图:目的是将一个数据集中的数据放在一个坐标系中,然后让除了数据以外坐标系中其他区域也显示分类情况
# 1、先划分坐标系
x = np.linspace(data2.iloc[:, 0].min(), data2.iloc[:, 0].max(), 1000)   # 把x等分成1000份
y = np.linspace(data2.iloc[:, 1].min(), data2.iloc[:, 1].max(), 1000)   # 把y等分成1000份X, Y = np.meshgrid(x, y) # 按行复制y个x,按列复制x个y
XY = np.c_[X.ravel(), Y.ravel()] # 将x扁平化,将y扁平化,再一对一组合,最终XY形状为(1000000, 2)
# 用KNN模型预测
knn = KNeighborsClassifier()
knn.fit(data2, target)
y_pred = knn.predict(XY)
y_pred
# 分界图
plt.scatter(XY[:, 0], XY[:, 1], c=y_pred)

在这里插入图片描述
注意:上面绘图需要等待,可以使用matplotlib自带的绘图函数,绘图就不用等待了。
pcolormesh(): 画分界图,边界图
plt.pcolormesh(X, Y, y_pred.reshape(1000, 1000))

http://www.laogonggong.com/news/44088.html

相关文章:

  • 网页设计作业买别人的网站推广优化排名seo
  • 网站建设维护更新上海小红书seo
  • 开公司需要多少钱北京seo优化服务
  • 最全做暖暖网站泰州seo
  • 东莞南城做网站长沙本地推广
  • 无极网站招聘信息google下载安卓版下载
  • 附近的网站建设公司国际国内新闻最新消息今天
  • 河北住房和建设厅官方网站澳门seo关键词排名
  • 受欢迎的广州做网站谷歌怎么投放广告
  • 电商网站设计推荐亿企邦如何快速推广自己的产品
  • 网站开发的功能需求文档百度一下百度一下你就知道
  • 强的网站建设公司西地那非片能延时多久有副作用吗
  • dedecms做国外网站电子商务seo名词解释
  • 网站logo怎么做才清晰seo薪酬
  • 做ic的电子网站有哪些seo系统培训哪家好
  • 网站主页设计注意点找竞价托管公司
  • 烟台网站建设联系电话如何做一个自己的网页
  • 网站备案信息怎么做电商网站平台有哪些
  • dreamweaver下载官网长春seo排名
  • 男人与女人做视频网站舆情通
  • 网站怎么开启gzip广州市网络seo外包
  • 网络营销最好的方法英文关键词seo
  • 手机网站建设书籍全网推广的方式有哪些
  • 泰州外贸网站设计市场调研报告500字
  • 怎么做代刷网站教程百度指数人群画像
  • 商务网站建设期末考试有什么公司要做推广的
  • 资产负债表在哪个网站可以做刷seo快速排名
  • 网站承载量怎么做武汉seo人才
  • 供应网站建设seo排名优化推广教程
  • 网站后台ftp替换图片怎么做湛江今日头条