当前位置: 首页 > news >正文

龙岩网站报价网络营销策划书总结

龙岩网站报价,网络营销策划书总结,宜春网站建设联系方式,涪陵网站建设公司核和值域的关系:什么是矩阵的秩? 这篇博客将介绍一个任意矩阵的核和值域的关系,并由此说明矩阵秩的意义、子空间维数、子空间正交。 1、矩阵的核:N(A) A ∈ C m n A\in C^{m\times n} A∈Cmn,矩阵的核,记…

核和值域的关系:什么是矩阵的秩?

这篇博客将介绍一个任意矩阵的核和值域的关系,并由此说明矩阵秩的意义、子空间维数、子空间正交。

1、矩阵的核:N(A)

A ∈ C m × n A\in C^{m\times n} ACm×n,矩阵的核,记作N(A),N是nullity的首字母。
N ( A ) = { x ∣ A x = 0 , x ∈ C n } N(A)=\{x|Ax=0,x\in C^n \} N(A)={xAx=0,xCn}
A的核,其实就是齐次方程组Ax=0的所有解(解空间)。下面介绍解的情况。

  1. rank(A)=n,则有唯一解,且唯一解为0,N(A)={0}
  2. rank(A)=r<n,则有无穷多解,且基本未知数个数为r,自由未知数个数为n-r,dim(N(A))=n-r

可用行阶梯形来理解上述定理。注意,行初等变换不改变矩阵的解空间
A x = 0 ⇒ A ~ x = 0 A ~ = [ a 1 , 1 a 1 , 2 a 1 , 3 … a 1 , n a 2 , 2 a 2 , 3 … a 2 , n ⋮ ⋱ ⋱ ⋮ ( 0 ) ⋱ a n − 1 , n 0 ⋯ a n , n ] Ax=0 \Rightarrow \tilde Ax=0\\ {\mathbf {\tilde A}}={\begin{bmatrix}a_{{1,1}}&a_{{1,2}}&a_{{1,3}}&\ldots &a_{{1,n}}\\ &a_{{2,2}}&a_{{2,3}}&\ldots &a_{{2,n}}\\ \vdots &&\ddots &\ddots &\vdots \\ &(0)&&\ddots &a_{{n-1,n}}\\ 0&&\cdots &&a_{{n,n}}\end{bmatrix}} Ax=0A~x=0A~= a1,10a1,2a2,2(0)a1,3a2,3a1,na2,nan1,nan,n
当rank(A)=n时,a_nn ≠ 0,因此x_n=0;关注第n-1行: a n − 1 , n − 1 x n − 1 + a n − 1 , n x n = 0 a_{n-1,n-1}x_{n-1}+a_{n-1,n}x_{n}=0 an1,n1xn1+an1,nxn=0,连锁反应将使得x_i=0, i=1~n;

当rank(A)=r是,a_rr ≠ 0,因此x_r=0,所以x=[0,0,0,*,*,*],r个0,n-r个任意值。

2、矩阵的值域:R(A)

A ∈ C m × n A\in C^{m\times n} ACm×n,矩阵的值域,记作R(A),R是range的首字母。
R ( A ) = { y ∈ C m ∣ y = A x , x ∈ C n } R(A)=\{y\in C^m|y=Ax,x\in C^n \} R(A)={yCmy=Ax,xCn}
值域就是A的列向量组所能张成的最大空间。

  1. dim(R(A)) = rank(A) = rank(AH) = dim(R(AH))
  2. 秩-零化度定理:rank(A)+nullity(A)=n,nullity(A)=dim(N(A))

可以从线性表出的角度去理解。注意,矩阵的分块乘法。
y = A x = ( α 1 , α 2 , ⋯ , α n ) ( x 1 , x 2 , ⋯ , x n ) T = x 1 α 1 + x 2 α 2 + ⋯ + x n α n \begin{aligned} y &=Ax \\ &= (\alpha_1,\alpha_2,\cdots,\alpha_n)(x_1,x_2,\cdots,x_n)^T\\ &= x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n \end{aligned} y=Ax=(α1,α2,,αn)(x1,x2,,xn)T=x1α1+x2α2++xnαn

3、子空间正交

所谓子空间正交,就是子空间W1的所有向量和W2所有向量正交。
< y , x > = < A x , x > = ( A x ) H x = x H A H x <y,x>=<Ax,x>=(Ax)^Hx=x^HA^Hx <y,x>=<Ax,x>=(Ax)Hx=xHAHx
因此R(A)和N(AH)正交。

  1. $R(A) \cap N(A^H)={0} $
  2. R ( A ) ⊕ N ( A H ) = C m R(A) \oplus N(A^H) = C^m R(A)N(AH)=Cm

⊕ \oplus 是直和,只有两个正交的空间才能进行直和运算。

直和:对于V1+V2中任何一个向量a=a1+a2,其中a1属于V1,a2属于V2,这种表示是唯一的,则称V1+V2为直和。

4、子空间维数定理

V 1 + V 2 = { x 1 + x 2 ∣ x 1 ∈ V 1 , x 2 ∈ V 2 } V 1 ∩ V 2 = { x ∣ x ∈ V 1 , x ∈ V 2 } V_1+V_2=\{x_1+x_2|x_1\in V_1,x_2\in V_2 \}\\ V_1\cap V_2=\{x|x\in V_1,x\in V_2 \} V1+V2={x1+x2x1V1,x2V2}V1V2={xxV1,xV2}

子空间维数定理:
d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V1\cap V_2)\\ dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)
可从三维空间理解。V1和V2是两个不相同的平面,各自维数为2,相加为4。和空间为整个三维空间,交空间为一条直线,即一维空间。

5、非齐次线性方程组的解

在第一节介绍了其次线性方程组Ax=0的解,下面介绍非齐次线性方程组Ax=b的解,其中 A ∈ C m × n A\in C^{m\times n} ACm×n A ˉ = [ A , b ] \bar A=[A,b] Aˉ=[A,b]是增广矩阵。

  1. 如果rank(A)=rank( A ˉ \bar A Aˉ)=n,则方程组有唯一解。
  2. 如果rank(A)=rank( A ˉ \bar A Aˉ)=r<n,则方程组有无穷多解。解空间维数为r,即基本未知数有r个,自由未知数有n-r个。
  3. 如果rank(A)<rank( A ˉ \bar A Aˉ),则方程组无解,解空间为空。
  4. 不存在rank(A)>rank( A ˉ \bar A Aˉ)

注意,齐次方程组必定有解,而非齐次方程组可能无解。

http://www.laogonggong.com/news/38792.html

相关文章:

  • 电商网站适合做响应式布局吗国际热点新闻
  • 广东网站建设定制域名交易
  • 淮安哪里有做网站的搜索引擎营销的流程
  • 精美网站制作公司网站查询访问
  • 2018年网站优化怎么做如何建立公司网站网页
  • 苏州注册网络公司价格重庆seo研究中心
  • 怎么做网页版调查问卷电商seo引流
  • html动态页面代码百度搜索引擎优化方案
  • 下载好了网站模板怎么开始做网站优化设计单元测试卷
  • 网络兼职做网站设计求老哥给几个靠谱的网站
  • vb做网站时怎么添加图片亚马逊seo关键词优化软件
  • 设计素材网站能挣钱吗页面优化的方法有哪些
  • 做网站那里好济南网站seo哪家公司好
  • 网站开发和软件开发哪个难博客seo优化技术
  • 通辽做家教的网站北京网
  • 做二维码推送网站seo有哪些优缺点?
  • 企业网站备案注销自己建网站的详细步骤
  • 网站的关键词多少合适收录之家
  • o2o典型代表网站google关键词优化排名
  • 高端网站改版顾问百度广告联盟平台的使用知识
  • 网站开发中涉及的两种服务器seo关键词排名优化品牌
  • 做网站如何选择颜色全媒体广告代理加盟
  • 车行网站源码下载安装
  • 做钢材生意一般做什么网站好查找网站
  • 武汉城市建设招标网站微信销售平台
  • 网站建设代理招标广告网页
  • 湖北省建设厅网站上岗证查询百度投放广告流程
  • 网站开发的各个阶段及其完成的任务站内营销推广途径
  • 建德营销型网站建设网站建设免费
  • 没有做等保的网站不能上线对吗十大网络营销成功案例