当前位置: 首页 > news >正文

php做网站的好处成都达洱狐网络科技有限公司

php做网站的好处,成都达洱狐网络科技有限公司,网页布局设计说明,beego框架做的网站前言 我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二&#xf…

前言

我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity = 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二:

  • 每隔index_granularity行对主键组的数据进行采样,形成稀疏索引,并存储在primary.idx文件中;

  • 每隔index_granularity行对每一列的压缩数据([column].bin)进行采样,形成数据标记,并存储在[column].mrk文件中。

index_granularity、primary.idx、[column].bin/mrk之间的关系可以用ClickHouse之父Alexey Milovidov展示过的一幅简图来表示。

image.png

但是早在ClickHouse 19.11.8版本,社区就引入了自适应(adaptive)索引粒度的特性,并且在之后的版本中都是默认开启的。也就是说,主键索引和数据标记生成的间隔可以不再固定,更加灵活。下面通过简单实例来讲解固定索引粒度和自适应索引粒度之间的不同之处。

固定索引粒度

利用Yandex.Metrica提供的hits_v1测试数据集,创建如下的表。

CREATE TABLE datasets.hits_v1_fixed
(`WatchID` UInt64,`JavaEnable` UInt8,`Title` String,-- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, index_granularity_bytes = 0;  -- Disable adaptive index granularity

注意使用SETTINGS index_granularity_bytes = 0取消自适应索引粒度。将测试数据导入之后,执行OPTIMIZE TABLE语句触发merge,以方便观察索引和标记数据。

来到merge完成后的数据part目录中——笔者这里是201403_1_32_3,并利用od(octal dump)命令观察primary.idx中的内容。注意索引列一共有3列,Counter和intHash32(UserID)都是32位整形,EventDate是16位整形(Date类型存储的是距离1970-01-01的天数)。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx 1635  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx 16149        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx 1562260480  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx 3266  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx 490736209  # intHash32(UserID)[2]

能够看出ORDER BY的第一关键字Counter确实是递增的,但是不足以体现出index_granularity的影响。因此再观察一下标记文件的内容,以8位整形的Age列为例,比较简单。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 320 Age.mrk0                    00                 81920                163840                245760                327680                409600                491520                5734419423                    019423                 819219423                1638419423                2457619423                3276819423                4096019423                4915219423                5734445658                    045658                 819245658                1638445658                24576

上面打印出了两列数据,表示被选为标记的行的两个属性:第一个属性为该行所处的压缩数据块在对应bin文件中的起始偏移量,第二个属性为该行在数据块解压后,在块内部所处的偏移量,单位均为字节。由于一条Age数据在解压的情况下正好占用1字节,所以能够证明数据标记是按照固定index_granularity的规则生成的。

自适应索引粒度

创建同样结构的表,写入相同的测试数据,但是将index_granularity_bytes设为1MB(为了方便看出差异而已,默认值是10MB),以启用自适应索引粒度。

CREATE TABLE datasets.hits_v1_adaptive
(`WatchID` UInt64,`JavaEnable` UInt8,`Title` String,-- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, index_granularity_bytes = 1048576;  -- Enable adaptive index granularity

index_granularity_bytes表示每隔表中数据的大小来生成索引和标记,且与index_granularity共同作用,只要满足两个条件之一即生成。

触发merge之后,观察primary.idx的数据。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx61  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx16151        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx1579769176  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx63  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx2037061113  # intHash32(UserID)[2]

通过Counter列的数据可见,主键索引明显地变密集了,说明index_granularity_bytes的设定生效了。接下来仍然以Age列为例观察标记文件,注意文件扩展名变成了mrk2,说明启用了自适应索引粒度。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 2048 --width=24 Age.mrk20                    0                 11200                 1120                 11200                 2240                 11200                 3360                 11200                 4480                 11200                 5600                 11200                 6720                 11200                 7840                  3520                 8192                 11110                 9303                 11110                10414                 11110                11525                 11110                12636                 11110                13747                 11110                14858                 11110                15969                  4150                16384                 1096
# 略去一些17694                    0                 110217694                 1102                 110217694                 2204                 110217694                 3306                 110217694                 4408                 110217694                 5510                 110217694                 6612                  95617694                 7568                 1104
# ......

mrk2文件被格式化成了3列,前两列的含义与mrk文件相同,而第三列的含义则是两个标记之间相隔的行数。可以观察到,每隔1100行左右就会生成一个标记(同时也说明该表内1MB的数据大约包含1100行)。同时,在偏移量计数达到8192、16384等8192的倍数时(即经过了index_granularity的倍数行),同样也会生成标记,证明两个参数是协同生效的。

最后一个问题:ClickHouse为什么要设计自适应索引粒度呢?

当一行的数据量比较大时(比如达到了1kB甚至数kB),单纯按照固定索引粒度会造成每个“颗粒”(granule)的数据量膨胀,拖累读写性能。有了自适应索引粒度之后,每个granule的数据量可以被控制在合理的范围内,官方给定的默认值10MB在大多数情况下都不需要更改。

作者:京东物流 康琪

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

http://www.laogonggong.com/news/43534.html

相关文章:

  • 中国人做的比较好的shopify网站系列推广软文范例
  • 武汉网站关键词优化报价免费b2b
  • 上海住房和城乡建设部网站官网网络营销工具
  • 哪些网站专做自媒体的seo在线外链
  • wpf视频教程 -.net购物网站开发免费关键词挖掘工具
  • 网站上的网站地图怎么做搜索引擎关键词优化方案
  • 湘潭网站制作公司电商如何推广自己的产品
  • 企业网站开发建设委托合同seo是指什么
  • 高端企业网站建设好的公司百度广告服务商
  • 视频设计师是干什么的seo排名工具给您好的建议下载官网
  • 资阳公司网站建设优化大师官方下载
  • python基础教程这本书怎么样泉州关键词优化排名
  • 校园生活网页设计图片模板seo网站推广推荐
  • 在学做网站还不知道买什么好seo属于什么职位类型
  • 如何做房地产微信推送网站广告中国十大营销策划机构
  • 做一个众筹网站多少钱进入百度网首页
  • 深圳网站建设公司哪家专业seo营销排名
  • word用来做网站的南宁seo教程
  • wordpress更改注册北京seo外包
  • 禅城区做网站策划淘宝优秀软文范例100字
  • 合肥网站制作报谷歌推广开户
  • 网站运营思路seo搜狗
  • 用java怎么做游戏下载网站百度百科推广费用
  • wordpress 分页制作seo咨询服务价格
  • 工程建设信息网站网络营销优秀案例
  • 为什么做动漫短视频网站职业培训机构哪家最好
  • 网站建设代码信息流广告模板
  • 武汉网站开发公司哪家好国际形势最新消息
  • 泉州建设网站的公司爱站seo查询
  • 山东网站设计产品营销策划方案怎么做