当前位置: 首页 > news >正文

wordpress 目录打不开大型网站怎么做优化

wordpress 目录打不开,大型网站怎么做优化,威海专业做网站公司,中国优秀企业网站1.背景 NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。在早期,MSET融合了…

1.背景

  1. NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。
  2. 在早期,MSET融合了模式识别技术和序贯概率比检验方法,主要应用于核电厂信号验证、仪表精度监控以及组件运行失常等监控场景的研究工作。

2.应用

  1. 工业监控:MSET可用于监测和预测工业设备的状态和性能。通过分析传感器数据和监测参数,MSET可以实时监测设备的运行状态,及时检测异常情况,预测设备故障,并提供预警和维修建议。
  2. 电力系统:MSET可以用于电力系统的状态估计和故障检测。它可以通过分析电力系统中的电流、电压、频率等参数,实时监测电力系统的运行状态,检测潜在的故障或异常情况,并提供故障诊断和恢复策略。

3.概念原理

3.1流程简介

非线性状态估计(NSET)方法是将当前运行数据和已生成的历史运行状态进行对比,计算并比较多状态变量之间的相似度,从而进行故障预警的方法。

3.2流程图

在这里插入图片描述

3.3逐步解析

1)观测矩阵

观测矩阵形象的表示就是一组多变量多步时间数据,其中有m个时间状态,每个时间状态有n个变量数据。
( x 11 x 12 . . . x 1 m x 21 x 22 . . . x 2 m . . . . . . . . . . . . x n 1 x n 2 . . . x n m ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x11 & x12 & ... & x1m\\ %第一行元素 x21 & x22 & ... & x2m\\ %第二行元素 ... & ... & ... & ...\\ xn1 & xn2 & ... & xnm\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x11x21...xn1x12x22...xn2............x1mx2m...xnm

2)训练数据

训练数据K包含系统全范围的动态参数,涵盖的面一定要全,包含了开始运行、运行平稳、运行结束等阶段数据,而且一定不能包含故障数据。
K = [ X ( t 1 + i ) , X ( t 2 + i ) , X ( t k + i ) ] K=[X(t_{1+i}),X(t_{2+i}),X(t_{k+i})] K=[X(t1+i),X(t2+i),X(tk+i)]

3)记忆矩阵

从训练数据中抽取一部分代表性数据,可以组成过程记忆矩阵D,过程记忆矩阵大小为nXd,其中d表示为包含状态的数量,n表示为了观测参数的维度。
( x 1 ( t 1 ) . . . x 1 ( t d ) . . . . . . . . . x n ( t 1 ) . . . x n ( t d ) ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x_1(t_1) & ... & x_1(t_d)\\ %第一行元素 ... & ... & ...\\ %第二行元素 x_n(t_1) & ... & x_n(t_d)\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x1(t1)...xn(t1).........x1(td)...xn(td)

4)剩余训练数据

训练数据中除去记忆矩阵的剩余部分,将会组成剩余训练数据L

5)当前系统估计矩阵

Xobs是当前系统观测矩阵,如果想要求当前系统的估计矩阵,那么就需要使用观测矩阵乘以某个大小相同的权重矩阵,即:
X e s t = D ⋅ W X_{est}=D·W Xest=DW
权值矩阵W为表征状态估计和过程记忆矩阵间相似性测度的大小,为了让Xobs和Xest的残差值最小化,进行求解

6)求解过程

目标函数: m i n ϵ 2 = m i n [ ( X o b s − D ⋅ W ) T ⋅ ( X o b s − D ⋅ W ) ] 目标函数:min\epsilon^2=min[(X_{obs}-D·W)^T·(X_{obs}-D·W)] 目标函数:minϵ2=min[(XobsDW)T(XobsDW)]
最小二乘解: W = ( D T ⋅ D ) − 1 ⋅ ( D T ⋅ D o b s ) 最小二乘解:W=(D^T·D)^{-1}·(D^T·D_{obs}) 最小二乘解:W=DTD1DTDobs
大多数系统的状态数据间都会存在一定的相关性,数据之间的相关性会导致矩阵不可逆,限制了权值的求取。NSET方法利用基于相似性原理的相似性运算符代替点积,通过计算数据状态间的相似程度来表征其权值,解决数据相关所造成的矩阵不可逆。
相似性运算符号: ⊗ 相似性运算符号:\otimes 相似性运算符号:
W = ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) W=(D^T\otimes D)^{-1}·(D^T\otimes D_{obs}) W=(DTD)1(DTDobs)
最终,系统当前的状态估计矩阵与观测矩阵关系如下结果:
X e s t = D ⋅ ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) X_{est}=D·(D^T \otimes D)^{-1}·(D^T\otimes D_{obs}) Xest=D(DTD)1(DTDobs)

http://www.laogonggong.com/news/81127.html

相关文章:

  • php网站模板怎么安装线上招生引流推广方法
  • 衡水企业网站制作展厅多媒体
  • 网站设计工资怎么样项目管理软件对比
  • 品牌网站建设找哪家制作网页可以用
  • app手机端电子商务网站功能在哪里创建网站
  • 深圳定制网站找图片素材的网站有哪些
  • 做啥网站流量高建立企业网站
  • 自助建站系统源源码建企业网站 硬件
  • 齐齐哈尔企业网站排名优化用代码怎么建设网站
  • 廊坊网站建设案例jquery图片效果网站
  • 临沂网站建设方案书洛阳网站建设汉狮怎么样
  • python做视频点播网站网站演示网站代码
  • 网站规划与开发实训室建设方案河北怎样做网站
  • 肥城网站建设公司flash网站设计
  • 广东建设职业技术学院官方网站wordpress如何设置支付
  • wordpress 分享 赞seo+网站排名
  • 做网站需要专业网站建设推荐频道
  • 做二手机网站html网页生成
  • 龙岩做网站设计公司营销策划的重要性
  • 网站建设维护内容做网站域名解析
  • 自己电脑做网站 路由器网站做多少外链
  • 做自适应网站制作dede 网站标题
  • 网站开发平台目录湖南省第四工程公司官网
  • 十堰网站建设制作公司wordpress注册错误
  • 微信php网站开发流程图wordpress 页面 表格
  • 建站用什么搭建比较好赣州的免费网站建设
  • 网站是用什么做的标识设计公司
  • 360免费建站网页链接樱桃小丸子网页设计代码
  • 兰西网站建设我想投资谁有项目
  • psdw做网站免费发帖平台