当前位置: 首页 > news >正文

有没有做租赁的网站上海网站制作维护

有没有做租赁的网站,上海网站制作维护,个人网站 备案 广告,可以拿自己电脑做网站目录 一、示例1-五点菱形格式 1.1 C代码 1.2 计算结果 二、示例2-九点紧差分格式 2.1 C代码 2.2 计算结果 三、示例3-二阶混合边值 3.1 C代码 3.2 计算结果 本专栏对椭圆型偏微分方程的三种主要差分方法进行了介绍#xff0c;并给出相应格式的理论推导过程。为加深对…目录 一、示例1-五点菱形格式 1.1 C代码 1.2 计算结果 二、示例2-九点紧差分格式 2.1 C代码 2.2 计算结果 三、示例3-二阶混合边值 3.1 C代码 3.2 计算结果 本专栏对椭圆型偏微分方程的三种主要差分方法进行了介绍并给出相应格式的理论推导过程。为加深对差分格式的理解分别对三种方法进行C编程示例。 一、示例1-五点菱形格式 已知精确解为。分别取两种剖分数m20n30和m40n60输出10个节点和处的数值解并给出误差。要求在各个节点处最大误差的迭代误差限为。 1.1 C代码 #include cmath #include stdlib.h #include stdio.hint main(int argc, char* argv[]) {int m,n,i,j,k,num;double xa,xb,ya,yb,dx,dy,alpha,beta,gamma,err,maxerr;double *x,*y,**u,**temp;double leftboundary(double y);double rightboundary(double y);double bottomboundary(double x);double topboundary(double x);double f(double x, double y);double exact(double x, double y);xa1.0;xb2.0;ya0.0;yb3.0;m20;n30;printf(m%d,n%d.\n,m,n);dx(xb-xa)/m;dy(yb-ya)/n;beta1.0/(dx*dx);gamma1.0/(dy*dy);alpha2.0*(betagamma);x(double*)malloc(sizeof(double)*(m1));for(i0;im;i)x[i]xai*dx;y(double*)malloc(sizeof(double)*(n1));for(j0;jn;j)y[j]yaj*dy;u(double**)malloc(sizeof(double*)*(m1));temp(double**)malloc(sizeof(double*)*(m1));for(i0;im;i){u[i](double*)malloc(sizeof(double)*(n1));temp[i](double*)malloc(sizeof(double)*(n1));}for(j0;jn;j){u[0][j]leftboundary(y[j]);u[m][j]rightboundary(y[j]);}for(i1;im;i){u[i][0]bottomboundary(x[i]);u[i][n]topboundary(x[i]);}for(i1;im;i){for(j1;jn;j)u[i][j]0.0;}for(i0;im;i){for(j0;jn;j)temp[i][j]u[i][j];}k0;do{maxerr0.0;for(i1;im;i){for(j1;jn;j){temp[i][j](f(x[i],y[j])beta*(u[i-1][j]temp[i1][j])gamma*(u[i][j-1]temp[i][j1]))/alpha;errfabs(temp[i][j]-u[i][j]);if(errmaxerr)maxerrerr;u[i][j]temp[i][j];}}kk1;}while(maxerr0.5*1e-10);printf(k%d.\n,k);kn/6;numm/4;for(jk;jn;jjk){printf((1.25,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}num3*m/4;for(jk;jn;jjk){printf((1.75,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}for(i0;im;i){free(u[i]);free(temp[i]);}free(x);free(y);return 0; }double leftboundary(double y) {return log(1.02*y*y); } double rightboundary(double y) {return log(4.02*y*y); } double bottomboundary(double x) {return 2*log(x); } double topboundary(double x) {return log(18.0x*x); } double f(double x, double y) {double temp1,temp2,z;temp1x*x; temp2y*y;ztemp12*temp2;return (4*temp2-2*temp1)/(z*z); } double exact(double x, double y) {return log(x*x2*y*y); } 1.2 计算结果 当m20n30时计算结果为 m20,n30. k959. (1.25,0.500), y0.724037, err1.1827e-04. (1.25,1.000), y1.270654, err1.9108e-04. (1.25,1.500), y1.802202, err7.9937e-05. (1.25,2.000), y2.257872, err2.3280e-05. (1.25,2.500), y2.643516, err4.1352e-06. (1.75,0.500), y1.270488, err2.5584e-05. (1.75,1.000), y1.621992, err1.3181e-04. (1.75,1.500), y2.023279, err7.7668e-05. (1.75,2.000), y2.403589, err2.7872e-05. (1.75,2.500), y2.744871, err6.9853e-06. 当m40n60时计算结果为 m40,n60. k3582. (1.25,0.500), y0.723948, err2.9304e-05. (1.25,1.000), y1.270510, err4.7781e-05. (1.25,1.500), y1.802142, err1.9972e-05. (1.25,2.000), y2.257855, err5.8033e-06. (1.25,2.500), y2.643513, err1.0237e-06. (1.75,0.500), y1.270469, err6.1963e-06. (1.75,1.000), y1.621893, err3.2942e-05. (1.75,1.500), y2.023221, err1.9426e-05. (1.75,2.000), y2.403568, err6.9568e-06. (1.75,2.500), y2.744866, err1.7374e-06. 二、示例2-九点紧差分格式 已知精确解为。分别取两种剖分数m20n30和m40n60输出10个节点和处的数值解并给出误差。要求在各个节点处最大误差的迭代误差限为。 2.1 C代码 #include cmath #include stdlib.h #include stdio.hint main(int argc, char*argv[]) {int m,n,i,j,k,num;double xa,xb,ya,yb,dx,dy,alpha,beta,gamma,err,maxerr;double *x,*y,**u,**g,**temp,kexi,eta1,eta2;double leftboundary(double y);double rightboundary(double y);double bottomboundary(double x);double topboundary(double x);double f(double x, double y);double **Gij(double *x, double *y, int m, int n);double exact(double x, double y);xa1.0;xb2.0;ya0.0;yb3.0;m20;n30;printf(m%d,n%d.\n,m,n);dx(xb-xa)/m;dy(yb-ya)/n;beta1.0/(dx*dx);gamma1.0/(dy*dy);kexibetagamma;eta110*beta-2*gamma;eta210*gamma-2*beta;x(double*)malloc(sizeof(double)*(m1));for(i0;im;i)x[i]xai*dx;y(double*)malloc(sizeof(double)*(n1));for(j0;jn;j)y[j]yaj*dy;u(double**)malloc(sizeof(double*)*(m1));temp(double**)malloc(sizeof(double*)*(m1));for(i0;im;i){u[i](double*)malloc(sizeof(double)*(n1));temp[i](double*)malloc(sizeof(double)*(n1));}for(j0;jn;j){u[0][j]leftboundary(y[j]);u[m][j]rightboundary(y[j]);}for(i1;im;i){u[i][0]bottomboundary(x[i]);u[i][n]topboundary(x[i]);}for(i1;im;i){for(j1;jn;j)u[i][j]0.0;}gGij(x,y,m,n);for(i0;im;i){for(j0;jn;j)temp[i][j]u[i][j];}k0;do{maxerr0.0;for(i1;im;i){for(j1;jn;j){temp[i][j](g[i][j]-kexi*(u[i-1][j-1]temp[i-1][j1]u[i1][j-1]temp[i1][j1])-eta1*(u[i-1][j]temp[i1][j])-eta2*(u[i][j-1]temp[i][j1]))/(-20*kexi);errfabs(temp[i][j]-u[i][j]);if(errmaxerr)maxerrerr;u[i][j]temp[i][j];}}kk1;}while(maxerr0.5*1e-10);printf(k%d.\n,k);kn/6;numm/4;for(jk;jn;jjk){printf((1.25,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}num3*m/4;for(jk;jn;jjk){printf((1.75,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}for(i0;im;i){free(u[i]);free(temp[i]);}free(u);free(temp);free(x);free(y);return 0; }double leftboundary(double y) {return log(1.02*y*y); } double rightboundary(double y) {return log(4.02*y*y); } double bottomboundary(double x) {return 2*log(x); } double topboundary(double x) {return log(18x*x); } double f(double x, double y) {double temp1, temp2, z;temp1x*x;temp2y*y;ztemp12*temp2;return (4*temp2-2*temp1)/(z*z); } double exact(double x, double y) {return log(x*x2*y*y); } double **Gij(double *x, double *y, int m, int n) {int i,j;double temp1,temp2,temp3,**ans;ans(double**)malloc(sizeof(double*)*(m1));for(i0;im;i)ans[i](double*)malloc(sizeof(double)*(n1));for(i0;im;i){for(j0;jn;j)ans[i][j]0.0;}for(i1;im;i){for(j1;jn;j){temp1f(x[i-1],y[j-1])10*f(x[i],y[j-1])f(x[i1],y[j-1]);temp2f(x[i-1],y[j])10*f(x[i],y[j])f(x[i1],y[j]);temp3f(x[i-1],y[j1])10*f(x[i],y[j1])f(x[i1],y[j1]);ans[i][j]-(temp1temp310*temp2)/12.0;}}return ans; } 2.2 计算结果 当m20n30时计算结果为 m20,n30. k805. (1.25,0.500), y0.723921, err2.5068e-06. (1.25,1.000), y1.270463, err4.0234e-07. (1.25,1.500), y1.802122, err8.8970e-08. (1.25,2.000), y2.257849, err6.0205e-08. (1.25,2.500), y2.643512, err2.1371e-08. (1.75,0.500), y1.270463, err8.8774e-07. (1.75,1.000), y1.621861, err5.0648e-07. (1.75,1.500), y2.023202, err1.3736e-10. (1.75,2.000), y2.403561, err4.9714e-08. (1.75,2.500), y2.744864, err2.2523e-08. 当m40n60时计算结果为 m40,n60. k3012. (1.25,0.500), y0.723919, err1.5248e-07. (1.25,1.000), y1.270463, err2.0549e-08. (1.25,1.500), y1.802122, err1.0963e-08. (1.25,2.000), y2.257849, err8.4329e-09. (1.25,2.500), y2.643512, err4.0188e-09. (1.75,0.500), y1.270463, err5.2372e-08. (1.75,1.000), y1.621860, err2.7195e-08. (1.75,1.500), y2.023202, err5.0463e-09. (1.75,2.000), y2.403561, err7.4797e-09. (1.75,2.500), y2.744864, err3.9218e-09. 三、示例3-二阶混合边值 已知精确解为。分别取两种剖分数m20n30和m40n60输出10个节点和处的数值解并给出误差。要求在各个节点处最大误差的迭代误差限为。  3.1 C代码 #include cmath #include stdlib.h #include stdio.hint main(int argc, char*argv[]) {int m, n, i, j, k, num;double xa, xb, ya, yb, dx, dy, alpha, beta, gamma, maxerr;double *x, *y, **u, **v, **lambda, kexi, eta, *d, temp;double f(double x, double y);double lambda_function(double x, double y);double phi1(double y);double phi2(double y);double psi1(double x);double psi2(double x);double exact(double x, double y);xa1.0;xb2.0;ya0.0;yb3.0;m20;n30;printf(m%d, n%d\n, m, n);dx(xb-xa)/m;dy(yb-ya)/n;beta1.0/(dx*dx);gamma1.0/(dy*dy);alpha2*(betagamma);kexi2.0/dx;eta2.0/dy;x(double*)malloc(sizeof(double)*(m1));for(i0;im;i)x[i]xai*dx;y(double*)malloc(sizeof(double)*(n1));for(j0;jn;j)y[j]yaj*dy;u(double**)malloc(sizeof(double*)*(m1));v(double**)malloc(sizeof(double*)*(m1));lambda(double**)malloc(sizeof(double*)*(m1));for(i0;im;i){u[i](double*)malloc(sizeof(double)*(n1));v[i](double*)malloc(sizeof(double)*(n1));lambda[i](double*)malloc(sizeof(double)*(n1));}for(i0;im;i){for(j0;jn;j){u[i][j]0.0;v[i][j]0.0;lambda[i][j]lambda_function(x[i], y[j]);}}d(double*)malloc(sizeof(double)*(m1));k0;do{maxerr0.0;for(i0;im;i)d[i]f(x[i],y[0])-eta*psi1(x[i]);d[0]d[0]-kexi*phi1(y[0]);d[m]d[m]kexi*phi2(y[0]);v[0][0](d[0]2*gamma*u[0][1]2*beta*u[1][0])/(alpha(kexieta)*lambda[0][0]);for(i1;im;i)v[i][0](d[i]2*gamma*u[i][1]beta*(v[i-1][0]u[i1][0]))/(alphaeta*lambda[i][0]);v[m][0](d[m]2*gamma*u[m][1]2*beta*v[m-1][0])/(alpha(kexieta)*lambda[m][0]);for(j1;jn;j){for(i0;im;i)d[i]f(x[i],y[j]);d[0]d[0]-kexi*phi1(y[j]);d[m]d[m]kexi*phi2(y[j]);v[0][j](d[0]gamma*(u[0][j1]v[0][j-1])2*beta*u[1][j])/(alphakexi*lambda[0][j]);for(i1;im;i)v[i][j](d[i]gamma*(v[i][j-1]u[i][j1])beta*(v[i-1][j]u[i1][j]))/alpha;v[m][j](d[m]gamma*(v[m][j-1]u[m][j1])2*beta*v[m-1][j])/(alphakexi*lambda[m][j]);}for(i0;im;i)d[i]f(x[i],y[n])eta*psi2(x[i]);d[0]d[0]-kexi*phi1(y[n]);d[m]d[m]kexi*phi2(y[n]);v[0][n](d[0]2*beta*u[1][n]2*gamma*v[0][n-1])/(alpha(kexieta)*lambda[0][n]);for(i1;im;i)v[i][n](d[i]beta*(v[i-1][n]u[i1][n])2*gamma*v[i][n-1])/(alphaeta*lambda[i][n]);v[m][n](d[m]2*beta*v[m-1][n]2*gamma*v[m][n-1])/(alpha(kexieta)*lambda[m][n]);for(i0;im;i){for(j0;jn;j){tempfabs(u[i][j]-v[i][j]);if(tempmaxerr)maxerrtemp;u[i][j]v[i][j];}}kk1;}while((maxerr0.5*1e-10)(k1e8));printf(k%d\n, k);kn/6;numm/4;for(jk;jn;jjk){printf((1.25,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}num3*m/4;for(jk;jn;jjk){printf((1.75,%.3f), y%f, err%.4e.\n,y[j],u[num][j],fabs(exact(x[num],y[j])-u[num][j]));}for(i0;im;i){free(u[i]);free(v[i]);free(lambda[i]);}free(u);free(v);free(lambda);free(x);free(y);free(d);return 0; }double f(double x, double y) {double temp1, temp2, z;temp1x*x;temp2y*y;ztemp12*temp2;return (4*temp2-2*temp1)/(z*z); } double lambda_function(double x, double y) {return 1.0; } double phi1(double y) {double z;z1.02*y*y;return 2.0/z-log(z); } double phi2(double y) {double z;z2y*y;return 2.0/zlog(2*z); } double psi1(double x) {return -2*log(x); } double psi2(double x) {double z;zx*x18.0;return 12.0/zlog(z); } double exact(double x, double y) {return log(x*x2*y*y); } 3.2 计算结果 当m20n30时计算结果为 m20, n30 k4470 (1.25,0.500), y0.723996, err7.7043e-05. (1.25,1.000), y1.270860, err3.9760e-04. (1.25,1.500), y1.802391, err2.6918e-04. (1.25,2.000), y2.257989, err1.3972e-04. (1.25,2.500), y2.643565, err5.3582e-05. (1.75,0.500), y1.270387, err7.5935e-05. (1.75,1.000), y1.622151, err2.9080e-04. (1.75,1.500), y2.023479, err2.7756e-04. (1.75,2.000), y2.403726, err1.6475e-04. (1.75,2.500), y2.744937, err7.3239e-05. 当m40n60时计算结果为 m40, n60 k16565 (1.25,0.500), y0.723937, err1.8621e-05. (1.25,1.000), y1.270562, err9.9132e-05. (1.25,1.500), y1.802189, err6.7202e-05. (1.25,2.000), y2.257884, err3.4879e-05. (1.25,2.500), y2.643525, err1.3353e-05. (1.75,0.500), y1.270443, err1.9346e-05. (1.75,1.000), y1.621933, err7.2431e-05. (1.75,1.500), y2.023271, err6.9315e-05. (1.75,2.000), y2.403602, err4.1144e-05. (1.75,2.500), y2.744882, err1.8266e-05.
http://www.laogonggong.com/news/116930.html

相关文章:

  • 做a小视频网站有哪些平台免费做推广
  • 黄冈网站建设策划软件外包服务内容
  • php语言开发网站流程青海网站制作多少钱
  • 基于python的网站开发项目清溪做网站的电话
  • 南充网站建设选略奥怎么联系网站管理员
  • 网站建设哪里去学最近时事新闻热点事件
  • 微擎如何做网站工业设计出来做什么
  • 做网站要考虑什么开发利用水资源
  • 手机上如何制作网站四川省建设厅的注册中心网站首页
  • 网站后台添加表格润和软件是外包公司吗
  • 做淘宝店和做网站国内网站域名
  • 网站等级保护必须做吗网络营销中自建网站
  • 电子商城网站设计论文小学网站建设教程
  • 长乐区建设局网站荔浦网站开发
  • 手工网站怎样做三角包成都专业网站建设优化团队
  • 内蒙古建设部网站官网福建漳州网站建设费用
  • 怎么做网站后期推广seo根据什么具体优化
  • 做展示型企业网站外贸建站推广公司
  • 太原顶呱呱做网站地址电话中国风网站建设
  • 做1688网站运营工资怎么样网站运营费用
  • 单招网站开发基础知识宜宾市住房和城乡建设局网站
  • 深圳龙岗网站维护资源库建设网站
  • 2018建设一个网站需要什么网站设计网站维护
  • 做网站的专业叫啥html网页制作介绍自己家乡
  • 饰品网站建设规划书网站空间面板
  • 国外网站建设素材旅游网站建设成都
  • 福建省中城建设工程有限公司网站goood设计网站
  • 全国疫苗接种率什么公司适合做seo优化
  • 网站关键词重要吗宝安网站开发
  • 菜谱网站手机源码青州网页定制