当前位置: 首页 > news >正文

石家庄百度搜索优化泉州百度seo

石家庄百度搜索优化,泉州百度seo,推广网站排名优化seo教程,网架公司招聘打板施工队伍梯度下降法在神经网络中的应用 事先规定: 用 n n n 表示个数(维度): n [ 0 ] n x n^{[0]}n_x n[0]nx​ ,表示单个训练样本 x x x 的元素个数; n [ 1 ] n^{[1]} n[1] 表示隐藏层 1 1 1 的单元(节点&am…

梯度下降法在神经网络中的应用

事先规定:

n n n 表示个数(维度):

n [ 0 ] = n x n^{[0]}=n_x n[0]=nx ,表示单个训练样本 x x x 的元素个数;

n [ 1 ] n^{[1]} n[1] 表示隐藏层 1 1 1 的单元(节点)个数;

n [ 1 ] n^{[1]} n[1] 表示……

梯度下降法公式:

w w w b b b 参数随机初始化;

②计算预测值

③求导: d w [ 1 ] dw^{[1]} dw[1] d b [ 1 ] db^{[1]} db[1] d w [ 2 ] dw^{[2]} dw[2] d b [ 2 ] db^{[2]} db[2]

④更新参数:
W [ 1 ] = W [ 1 ] − α ⋅ d W [ 1 ] b [ 1 ] = b [ 1 ] − α ⋅ d b [ 1 ] W [ 2 ] = W [ 2 ] − α ⋅ d W [ 2 ] b [ 2 ] = b [ 2 ] − α ⋅ d b [ 2 ] \begin{align*} &W^{[1]}=W^{[1]}-\alpha·dW^{[1]}\\ &b^{[1]}=b^{[1]}-\alpha·db^{[1]}\\ &W^{[2]}=W^{[2]}-\alpha·dW^{[2]}\\ &b^{[2]}=b^{[2]}-\alpha·db^{[2]} \end{align*} W[1]=W[1]αdW[1]b[1]=b[1]αdb[1]W[2]=W[2]αdW[2]b[2]=b[2]αdb[2]
第三步反向传播求导的详细步骤:
d Z [ 2 ] = A [ 2 ] − Y d W [ 2 ] = 1 m d Z [ 2 ] A [ 1 ] T d b [ 2 ] = 1 m n p . s u m ( d Z [ 2 ] , a x i s = 1 , k e e p d i m s = T r u e ) d Z [ 1 ] = W [ 2 ] T d Z [ 2 ] ∗ g [ 1 ] ′ ( Z [ 1 ] ) / / 这里的 ∗ 是元素对应相乘 d W [ 1 ] = 1 m d Z [ 1 ] X T / / 这里的转置是因为 W [ 1 ] 是由 w i [ 1 ] T 组成的 d b [ 1 ] = 1 m n p . s u m ( d Z [ 1 ] , a x i s = 1 , k e e p d i m s = T r u e ) \begin{align*} &dZ^{[2]}=A^{[2]}-Y\\ &dW^{[2]}=\frac{1}{m}dZ^{[2]}A^{[1]T}\\ &db^{[2]}=\frac{1}{m}np.sum(dZ^{[2]},axis=1,keepdims=True)\\ &dZ^{[1]}=W^{[2]T}dZ^{[2]}*g^{[1]'}(Z^{[1]})//这里的*是元素对应相乘\\ &dW^{[1]}=\frac{1}{m}dZ^{[1]}X^{T}//这里的转置是因为W^{[1]}是由w_i^{[1]T}组成的\\ &db^{[1]}=\frac{1}{m}np.sum(dZ^{[1]},axis=1,keepdims=True)\\ \end{align*} dZ[2]=A[2]YdW[2]=m1dZ[2]A[1]Tdb[2]=m1np.sum(dZ[2],axis=1,keepdims=True)dZ[1]=W[2]TdZ[2]g[1](Z[1])//这里的是元素对应相乘dW[1]=m1dZ[1]XT//这里的转置是因为W[1]是由wi[1]T组成的db[1]=m1np.sum(dZ[1],axis=1,keepdims=True)

参数随机初始化

神经网络的参数 w i [ l ] w_i^{[l]} wi[l] 和不能像逻辑回归一样,初始化为零,否则梯度下降算法就会无效。

也不要将隐藏层中的所有节点参数都初始化成一样的,否则每个节点都在做相同的运算,毫无意义。

W [ 1 ] = n p . r a n d o m . r a n d n ( ( n [ 1 ] , n [ 0 ] ) ) ⋅ 0.01 / / 高斯分布随机变量再乘以 0.01 b [ 1 ] = n p . z e r o s ( ( n [ 1 ] , 1 ) ) W [ 2 ] = . . . b [ 2 ] = . . . \begin{align*} &W^{[1]}=np.random.randn((n^{[1]},n^{[0]}))·0.01~//高斯分布随机变量再乘以0.01\\ &b^{[1]}=np.zeros((n^{[1]},1))\\ &W^{[2]}=...\\ &b^{[2]}=... \end{align*} W[1]=np.random.randn((n[1],n[0]))0.01 //高斯分布随机变量再乘以0.01b[1]=np.zeros((n[1],1))W[2]=...b[2]=...

通常情况下,会把参数随机初始化成很小很小的值,这也是乘以 0.01 0.01 0.01 的原因。

因为参数大的话, z z z 计算出来就会大, a a a 也会大,就会落在激活函数 σ ( z ) \sigma(z) σ(z) t a n h ( z ) tanh(z) tanh(z) 的平缓区域,就会降低梯度下降法的速度,甚至形成梯度消失问题。

http://www.laogonggong.com/news/71431.html

相关文章:

  • 网站建设付款方式如何用jsp做网站
  • 做招聘网站的需求分析建设网站推广
  • 山东企业网站建设公司建立网站基本步骤
  • 网站别人帮做的要注意什么手续网站建设方案的内容
  • 公司网站建设多少钱需要深圳住房和建设局网站融悦居
  • 承德网站设计公司物联网平台搭建
  • 创意产品网站如何登录qq网页版
  • 网站计数器php广州的广告公司有哪些
  • 网站建设所要花费的资金惠东县网站建设
  • 哈尔滨网站建设方案开发做淘客网站用什么服务器好
  • 免费文件外链网站标志设计图案
  • 如何判断一个网站是否用织梦建设的手机传奇手游发布网站
  • 做网站技术方法有东莞市新冠最新消息
  • 网站logo设计创意怎样建设自已的网站
  • 简单的企业网站建设教程wordpress怎么给产品设置分类
  • 微网站和wap网上商城都有哪些
  • 关键词排行优化网站中小型企业网站建设与管理
  • .net 网站优化营销型网店与品牌型网店的区别
  • 网站开发套餐优化快速排名教程
  • 凡科建站小程序iis wordpress 伪静态
  • 东莞营销网站制作查询关键词网站
  • 在社保网站上怎么做员工的退费论坛型网站开发
  • 建设厅网站的秘钥怎么买软文宣传推广
  • 有经验的佛山网站建设网站建设要做哪些工作室
  • 普兰店网站建设公司深圳建筑工地招工
  • 网站备案后怎么做怎么看网站pr值
  • 网站以前在百度能搜索不到了如何做个小程序自己卖货
  • 文章网站模板哪个好网络运维是干什么的
  • 博爱网站建设hostinger建站wordpress
  • 网站建设图片改不了网站开发方式有外包