当前位置: 首页 > news >正文

自己做发卡网站wamp搭建多个网站

自己做发卡网站,wamp搭建多个网站,网络营销知识,百度竞价排名医院事件需求:内网通过Excel文件将数据同步到外网的CDH服务器中,将CDH中的文件数据写入hive中。 CDH版本为:6.3.2 spark版本为:2.4 python版本:2.7.5 操作系统:CentOS Linux 7 集群方式:yarn-cluster …

需求:内网通过Excel文件将数据同步到外网的CDH服务器中,将CDH中的文件数据写入hive中。

CDH版本为:6.3.2
spark版本为:2.4
python版本:2.7.5
操作系统:CentOS Linux 7
集群方式:yarn-cluster

一、在linux中将excel文件转换成CSV文件,然后上传到hdfs中。
为何要先转csv呢?主要原因是pyspark直接读取excel的话,涉及到版本的冲突问题。commons-collections-3.2.2.jar 在CDH6.3.2中的版本是3.2.2.但是pyspark直接读取excel要求collections4以上的版本,虽然也尝试将4以上的版本下载放进去,但是也没效果,因为时间成本的问题,所以没有做过多的尝试了,直接转为csv后再读吧。
spark引用第三方包

1.1 转csv的python代码(python脚本)

#-*- coding:utf-8 -*-
import pandas as pd
import os, xlrd ,sysdef xlsx_to_csv_pd(fn):path1="/home/lzl/datax/"+fn+".xlsx"path2="/home/lzl/datax/"+fn+".csv"data_xls = pd.read_excel(path1, index_col=0)data_xls.to_csv(path2, encoding='utf-8')if __name__ == '__main__':fn=sys.argv[1]print(fn)try:xlsx_to_csv_pd(fn)print("转成成功!")except Exception as e:print("转成失败!")

1.2 数据中台上的代码(shell脚本):

#!/bin/bash
#@description:这是一句描述
#@author: admin(admin)
#@email: 
#@date: 2023-09-26 14:44:3# 文件名称
fn="项目投运计划"# xlsx转换成csv格式
ssh root@cdh02 " cd /home/lzl/shell; python xlsx2csv.py $fn" # 将文件上传到hfds上
ssh root@cdh02 "cd /home/lzl/datax; hdfs dfs -put $fn.csv /origin_data/sgd/excel/"
echo "上传成功~!"# 删除csv文件
ssh root@cdh02 "cd /home/lzl/datax; rm -rf $fn.csv"
echo "删除成功~!"

二、pyspark写入hive中
2.1 写入过程中遇到的问题点
2.1.1 每列的前后空格、以及存在换行符等问题。采取的措施是:循环列,采用trim函数、regexp_replace函数处理。

# 循环对每列去掉前后空格,以及删除换行符
import pyspark.sql.functions as F
from pyspark.sql.functions import col, regexp_replacefor name in df.columns:df = df.withColumn(name, F.trim(df[name]))df = df.withColumn(name, regexp_replace(col(name), "\n", ""))

2.1.2 个别字段存在科学计数法,需要用cast转换

from pyspark.sql.types import *# 取消销售订单号的科学记数法
col="销售订单号"
df= df.withColumn(col,df[col].cast(DecimalType(10, 0)))

去掉换行符另一种方法:换行符问题也可以参照这个

2.2 数据中台代码(pyspark)

# -*- coding:utf-8
# coding=UTF-8# 引入sys,方便输出到控制台时不是乱码
import  sys   
reload(sys)
sys.setdefaultencoding( "utf-8" )# 引入模块
from pyspark.sql.types import IntegerType, DoubleType, StringType, StructType, StructField
from pyspark.sql import SparkSession
from pyspark import SparkContext, SparkConf, SQLContext 
import pandas as pd
import pyspark.sql.functions as F
from pyspark.sql.functions import col, regexp_replace
from pyspark.sql.types import *# 设定资源大小
conf=SparkConf()\.set("spark.jars.packages","com.crealytics:spark-excel_2.11:0.11.1")\.set("spark.sql.shuffle.partitions", "4")\.set("spark.sql.execution.arrow.enabled", "true")\.set("spark.driver.maxResultSize","6G")\.set('spark.driver.memory','6G')\.set('spark.executor.memory','6G')# 建立SparkSession
spark = SparkSession \.builder\.config(conf=conf)\.master("local[*]")\.appName("dataFrameApply") \.enableHiveSupport() \.getOrCreate()# 读取cvs文件
# 文件名称和文件位置
fp= r"/origin_data/sgd/excel/项目投运计划.csv"
df = spark.read \.option("header", "true") \.option("inferSchema", "true") \.option("multiLine", "true") \.option("delimiter", ",") \.format("csv") \.load(fp)# 查看数据类型
# df.printSchema()# 循环对每列去掉前后空格,以及删除换行符
for name in df.columns:df = df.withColumn(name, F.trim(df[name]))df = df.withColumn(name, regexp_replace(col(name), "\n", ""))# 取消销售订单号的科学记数法
col="销售订单号"
df= df.withColumn(col,df[col].cast(DecimalType(10, 0)))df.show(25,truncate = False) # 查看数据,允许输出25行# 设置日志级别 (这两个没用)
sc = spark.sparkContext
sc.setLogLevel("ERROR")# 写入hive中
spark.sql("use sgd_dev")  # 指定数据库# 创建临时表格 ,注意建表时不能用'/'和''空格分隔,否则会影响2023/9/4和2023-07-31 00:00:00这样的数据
spark.sql("""
CREATE TABLE IF NOT EXISTS ods_sgd_project_operating_plan_info_tmp (project_no                string         ,sale_order_no             string         ,customer_name             string         ,unoperating_amt           decimal(19,2)  , expected_operating_time   string         ,operating_amt             decimal(19,2)  ,  operating_progress_track  string         ,is_Supplied               string         ,operating_submit_time     string         ,Signing_contract_time     string         ,remake                    string  )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'    
""")# 注册临时表
df.createOrReplaceTempView("hdfs_df")
# spark.sql("select * from hdfs_df limit 5").show() #查看前5行数据# 将数据插入hive临时表中
spark.sql("""insert overwrite table ods_sgd_project_operating_plan_info_tmp select * from hdfs_df
""")# 将数据导入正式环境的hive中
spark.sql("""insert overwrite table ods_sgd_project_operating_plan_info select * from ods_sgd_project_operating_plan_info_tmp
""")# 查看导入后的数据
spark.sql("select * from ods_sgd_project_operating_plan_info limit 20").show(20,truncate = False)# 删除注册的临时表
spark.sql("""drop table hdfs_df
""")# 删除临时表
spark.sql("""drop table ods_sgd_project_operating_plan_info_tmp
""")

关于spark的更多知识,可以参看Spark SQL总结

http://www.laogonggong.com/news/91776.html

相关文章:

  • wordpress手机评论怎么优化网站加载速度
  • 环保部网站官网建设项目审批视觉网络网站
  • 网站建设 6万元前端开发培训班
  • 海口北京网站建设谷歌浏览器下载手机版安卓
  • 网站备案查询 api深圳互联网
  • 大连网站建设工作室英雄联盟网站设计
  • 免费海报模板网站象山住房和城乡建设局网站
  • 鹤壁市城乡一体化示范区网站网站的二级页面怎么做代码
  • 网站建设与管理下拉列表框承德网站制作的流程
  • 用网页制作个人网站网站开发设计需要什么证书
  • 网站搭建的流程是什么各种浏览器网站大全
  • 网站建设etw不准别人网站做反链
  • python可以做网站前端wordpress按月归档
  • 如果做车站车次查询的网站需要什么消息信息seo公司 上海
  • 企业网站建设设计公司牡丹区住房城乡建设局网站
  • 网站的意思网络建设文章网站
  • 中国万网注册网站网页设计对板式上有哪些要求
  • 什么是网站版面布局做优化送网站
  • 搭建网站内链系统哈尔滨手机网页制作
  • 有链接的网站怎么做网站引导页怎么做的
  • 建筑公司网站案例桂林工程建设信息网站
  • 网站备案照相网站焦点图设计
  • 太原网站排名系统河南电商网站设计
  • dw软件怎么制作网页自我介绍深圳网站优化教程
  • php 同学录在线网站开发上海网站建设公司哪个好
  • 达州建设网站电商网站 网站服务内容
  • 网站做语言切换德州手机网站建设费用
  • 团队建设游戏网站高端外贸建站
  • 个人主页免费网站北京seo顾问
  • 网站开发基本语言最火的网站开发语言