当前位置: 首页 > news >正文

网站建设内容录入论文wordpress 替换域名

网站建设内容录入论文,wordpress 替换域名,重庆seo推广,p2p网站建设教程12种猫分类比赛传送门 要求很简单,给train和test集,训练模型实现图像分类。 这里使用的是残差连接模型,这个平台有预训练好的模型,可以直接拿来主义。 训练十几个迭代,每个批次60左右,准确率达到90%以上…

12种猫分类比赛传送门

要求很简单,给train和test集,训练模型实现图像分类。

这里使用的是残差连接模型,这个平台有预训练好的模型,可以直接拿来主义。

训练十几个迭代,每个批次60左右,准确率达到90%以上

一、导入库,解压文件

import os
import zipfile
import random
import json
import cv2
import numpy as np
from PIL import Imageimport matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import paddle
import paddle.nn as nn
from paddle.io import Dataset,DataLoader
from paddle.nn import \Layer, \Conv2D, Linear, \Embedding, MaxPool2D, \BatchNorm2D, ReLUimport paddle.vision.transforms as transforms
from paddle.vision.models import resnet50
from paddle.metric import Accuracytrain_parameters = {"input_size": [3, 224, 224],                     # 输入图片的shape"class_dim": 12,                                 # 分类数"src_path":"data/data10954/cat_12_train.zip",   # 原始数据集路径"src_test_path":"data/data10954/cat_12_test.zip",   # 原始数据集路径"target_path":"/home/aistudio/data/dataset",     # 要解压的路径 "train_list_path": "./train.txt",                # train_data.txt路径"eval_list_path": "./eval.txt",                  # eval_data.txt路径"label_dict":{},                                 # 标签字典"readme_path": "/home/aistudio/data/readme.json",# readme.json路径"num_epochs":6,                                 # 训练轮数"train_batch_size": 16,                          # 批次的大小"learning_strategy": {                           # 优化函数相关的配置"lr": 0.0005                                  # 超参数学习率} 
}scr_path=train_parameters['src_path']
target_path=train_parameters['target_path']
src_test_path=train_parameters["src_test_path"]
z = zipfile.ZipFile(scr_path, 'r')
z.extractall(path=target_path)
z = zipfile.ZipFile(src_test_path, 'r')
z.extractall(path=target_path)
z.close()
for imgpath in os.listdir(target_path + '/cat_12_train'):src = os.path.join(target_path + '/cat_12_train/', imgpath)img = Image.open(src)if img.mode != 'RGB':img = img.convert('RGB')img.save(src)for imgpath in os.listdir(target_path + '/cat_12_test'):src = os.path.join(target_path + '/cat_12_test/', imgpath)img = Image.open(src)if img.mode != 'RGB':img = img.convert('RGB')img.save(src)

 解压后将所有图像变为RGB图像

二、加载训练集,进行预处理、数据增强、格式变换

transform = transforms.Compose([transforms.Resize(size=224),transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.RandomResizedCrop(size=224, scale=(0.8, 1.0)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])x_train,x_eval,y_train=[],[],[]#获取训练图像和标签、测试图像和标签
contents=[]
with open('data/data10954/train_list.txt')as f:contents=f.read().split('\n')for item in contents:if item=='':continuepath='data/dataset/'+item.split('\t')[0]data=np.array(Image.open(path).convert('RGB'))data=np.array(transform(data))x_train.append(data)y_train.append(int(item.split('\t')[-1]))contetns=os.listdir('data/dataset/cat_12_test')
for item in contetns:path='data/dataset/cat_12_test/'+itemdata=np.array(Image.open(path).convert('RGB'))data=np.array(transform(data))x_eval.append(data)

重点是transforms变换的预处理

三、划分训练集和测试集

x_train=np.array(x_train)y_train=np.array(y_train)x_eval=np.array(x_eval)x_train,x_test,y_train,y_test=train_test_split(x_train,y_train,test_size=0.2,random_state=42,stratify=y_train)x_train=paddle.to_tensor(x_train,dtype='float32')
y_train=paddle.to_tensor(y_train,dtype='int64')
x_test=paddle.to_tensor(x_test,dtype='float32')
y_test=paddle.to_tensor(y_test,dtype='int64')
x_eval=paddle.to_tensor(x_eval,dtype='float32')

 这是必要的,可以随时利用测试集查看准确率

四、加载预训练模型,选择损失函数和优化器

learning_rate=0.001
epochs =5  # 迭代轮数
batch_size = 50  # 批次大小
weight_decay=1e-5
num_class=12cnn=resnet50(pretrained=True)
checkpoint=paddle.load('checkpoint.pdparams')for param in cnn.parameters():param.requires_grad=False
cnn.fc = nn.Linear(2048, num_class)
cnn.set_dict(checkpoint['cnn_state_dict'])
criterion=nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=learning_rate, parameters=cnn.fc.parameters(),weight_decay=weight_decay)

第一次训练把加载模型注释掉即可,优化器包含最后一层全连接的参数

五、模型训练 

if x_train.shape[3]==3:x_train=paddle.transpose(x_train,perm=(0,3,1,2))dataset = paddle.io.TensorDataset([x_train, y_train])
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
for epoch in range(epochs):for batch_data, batch_labels in data_loader:outputs = cnn(batch_data)loss = criterion(outputs, batch_labels)print(epoch)loss.backward()optimizer.step()optimizer.clear_grad()print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.numpy()[0]}")#保存参数
paddle.save({'cnn_state_dict': cnn.state_dict(),}, 'checkpoint.pdparams')

 使用批处理,这个很重要,不然平台分分钟炸了

六、测试集准确率

num_class=12
batch_size=64
cnn=resnet50(pretrained=True)
checkpoint=paddle.load('checkpoint.pdparams')for param in cnn.parameters():param.requires_grad=False
cnn.fc = nn.Linear(2048, num_class)
cnn.set_dict(checkpoint['cnn_state_dict'])cnn.eval()if x_test.shape[3]==3:x_test=paddle.transpose(x_test,perm=(0,3,1,2))
dataset = paddle.io.TensorDataset([x_test, y_test])
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)with paddle.no_grad():score=0for batch_data, batch_labels in data_loader:predictions = cnn(batch_data)predicted_probabilities = paddle.nn.functional.softmax(predictions, axis=1)predicted_labels = paddle.argmax(predicted_probabilities, axis=1) print(predicted_labels)for i in range(len(predicted_labels)):if predicted_labels[i].numpy()==batch_labels[i]:score+=1print(score/len(y_test))

设置eval模式,使用批处理测试准确率 

http://www.laogonggong.com/news/98068.html

相关文章:

  • 专业网站开发哪里有营销型网站内容
  • 丹阳官方网站建站好看的 网站正在建设中源码
  • 头像在线制作网站群晖wordpress 站点
  • 卖磁铁的网站怎么做的摄影作品网站知乎
  • 1m带宽做网站速度怎么样芜湖网站开发公司电话
  • 杭州本地网站厦门关键词优化平台
  • 网站后台信息发布这样做网站后台换图片
  • 云南建设注册考试中心网站app编程培训机构怎么选
  • vue 做pc网站搜索引擎大全排行
  • 网站需要多大空间河北住建局与建设厅网站
  • 手机怎么做微电影网站网站变移动网站
  • 做网站生意旁wordpress主题UIGREAT
  • 网站备案查询app下载wordpress做论坛
  • 阎良建设局 网站网页设计与制作实训报告个人主页
  • 商城网站带宽控制搜狐做app的网站
  • 网站托管平台营销型网站的案例
  • 承德网站建设报价安徽蚌埠怀远县建设局网站
  • 做原创品牌服饰的网站小程序商店代码
  • 哪些安防公司做了手机网站延边州建设局网站
  • 响应式大学网站wordpress两个站点文章同步
  • 自己电脑网站建设东莞房价2022
  • 网站上添加图片的原则地产项目网站设计
  • 网站建设答辩ppt模板自助建站信息网
  • asp.net 4.0网站开发与项目实战wordpress文件类型
  • 制作一个app软件需要多少钱模板网站怎么建设优化
  • 网站提交收录入口学校网站网页制作
  • 做网站电脑配置要求个高吗自己做的网站别人怎么上网找到
  • 小说网站怎么做不违法设计公司官方网站
  • 眉山北京网站建设排名优化关键词
  • 娱乐建设网站wordpress 用户密码的加密算法