当前位置: 首页 > news >正文

建设网站前的市场分析主要包括哪些内容平台类网站建设

建设网站前的市场分析主要包括哪些内容,平台类网站建设,wordpress动态新闻代码,中国建设银行英文网站前言:Hello大家好,我是小哥谈。YOLOv2是YOLO(You Only Look Once)目标检测算法的第二个版本,它在YOLOv1的基础上做了很多改进,包括使用更深的卷积神经网络Darknet-19作为特征提取器、使用Batch Normalizati…

前言:Hello大家好,我是小哥谈。YOLOv2是YOLO(You Only Look Once)目标检测算法的第二个版本,它在YOLOv1的基础上做了很多改进,包括使用更深的卷积神经网络Darknet-19作为特征提取器、使用Batch Normalization、使用锚盒(Anchor Box)等技术来提高准确性和速度。此外,YOLOv2还提出了一种分类和检测的联合训练策略,可以检测超过9000个类别的物体(故又称YOLO9000)。总的来说,YOLOv2在准确性、速度和识别种类方面都有很大的提升。本节课就给大家重点介绍下YOLO系列算法中的YOLOv2!🌈

     目录

🚀1.诞生背景

🚀2.论文发表

🚀3.技术原理

💥💥3.1 网络结构

💥💥3.2 训练策略

🚀4.性能评价

🚀1.诞生背景

2017年,作者Joseph RedmonAli Farhadi在YOLOv1的基础上,进行了大量改进,提出了YOLOv2 ,重点解决YOLOv1召回率和定位精度方面的不足。YOLOv2 是一个先进的目标检测算法,比其它的检测器检测速度更快。除此之外,该网络可以适应多种尺寸的图片输入,并且能在检测精度和速度之间进行很好的权衡。相比于YOLOv1是利用全连接层直接预测Bounding Box的坐标,YOLOv2借鉴了Faster R-CNN的思想,引入Anchor机制。利用K-means聚类的方法在训练集中聚类计算出更好的Anchor模板,大大提高了算法的召回率。同时结合图像细粒度特征,将浅层特征与深层特征相连,有助于对小尺寸目标的检测。

作者动机:♨️♨️♨️

1.YOLOv1 速度还是不够快,更换了分类的网络结构。

2.YOLOv1 能检测的物体的种类不够多,提出的YOLO9000利用了分类的数据库使得能检测9000种物体。

3.YOLOv1 召回率低,利用了anchor box解决同一个bonding box 只能检测同一类物体的问题。

YOLOv1和YOLOv2是两个不同版本的目标检测模型。它们之间的区别总结如下:

  1. 网络架构:YOLOv1使用一个单一的卷积神经网络(CNN)来同时预测边界框和类别,而YOLOv2采用了Darknet-19作为主干网络,并在其之上添加了额外的卷积层和特征金字塔网络。

  2. 特征提取:YOLOv1在最后一层使用全连接层来生成预测,而YOLOv2在特征图上进行多尺度预测。这种多尺度预测使得YOLOv2能够更好地捕捉不同尺度的目标。

  3. Anchor Boxes:YOLOv2引入了锚框(anchor boxes)的概念,通过在每个单元格上定义多个先验框,来预测不同尺度和长宽比的目标。这种方法使得YOLOv2能够更好地处理不同形状和大小的目标。

  4. 损失函数:YOLOv1使用平方误差来计算边界框坐标和类别的损失,而YOLOv2采用了适应性权重的交叉熵损失函数,以更好地处理类别不平衡问题。

  5. 训练策略:YOLOv2使用了分步训练策略。首先,使用较大的输入图像进行预训练,然后再用较小的输入图像进行微调。这种策略在提高模型性能的同时,还能提高模型的速度。


🚀2.论文发表

YOLOv2是一篇由Joseph Redmon和Ali Farhadi于2016年发表的目标检测论文。该论文提出了一种新的目标检测算法,可以更快地在各种图像尺寸下运行,并且可以检测9000种以上的目标类别。YOLOv2使用了锚框,这是YOLOv1没有使用的技术。此外,该论文还提出了一种新的网络结构,称为Darknet-19,可以在不损失准确性的情况下减少模型大小和计算量。YOLOv2的性能比YOLOv1有了显著的提升,成为了当时最先进的目标检测算法之一。

说明:♨️♨️♨️

论文题目:《YOLO9000: Better, Faster, Stronger》

论文地址:  https://arxiv.org/abs/1612.08242

说明:♨️♨️♨️

关于YOLOv2论文的详细解析,请参考文章:

优化改进 | YOLOv2论文介绍及翻译(纯中文版)


🚀3.技术原理

💥💥3.1 网络结构

YOLOv2 采用 Darknet-19 作为特征提取网络,其整体结构如下:

该网络结构的主要优势在于:

  • 没有全连接层,可以输入任意尺寸的图片。
  • 速度快,每2个卷积层之间用了1x1的卷积核来压缩模型。最后没用全链接层, 而是利用了avgpool。速度提升了。
  • 特点:每次pool尺寸减半,通道增加 一倍。

改进后的YOLOv2: Darknet-19,总结如下:

  • 与VGG相似,使用了很多3×3卷积核;并且每一次池化后,下一层的卷积核的通道数 = 池化输出的通道 × 2。
  • 在每一层卷积后,都增加了批量标准化(Batch Normalization)进行预处理。
  • 采用了降维的思想,把1×1的卷积置于3×3之间,用来压缩特征。
  • 在网络最后的输出增加了一个global average pooling层。
  • 整体上采用了19个卷积层,5个池化层。

💥💥3.2 训练策略

YOLOv2的训练策略主要包括以下几个步骤:

  1. 数据准备:首先需要准备训练数据集,包括图像和标注信息。标注信息通常包括物体的类别和边界框的位置。

  2. 网络初始化:使用预训练的卷积网络(如Darknet-19)作为特征提取器,然后添加额外的卷积层和全连接层来预测边界框的位置和类别。

  3. 损失函数:定义损失函数来度量预测和真实标注之间的差异。YOLOv2使用多任务损失函数,包括分类损失、边界框坐标损失和置信度损失。

  4. 训练过程:使用随机梯度下降(SGD)或其他相似的优化算法来最小化损失函数。在每个训练批次中,随机选择一批图像,并通过前向传播计算预测结果。然后使用反向传播更新网络参数。

  5. 数据增强:为了增加训练样本的多样性和鲁棒性,可以采用数据增强技术,如随机缩放、随机裁剪、随机旋转等。

  6. 迭代训练:重复执行步骤4和步骤5,直到达到预定的训练轮数或收敛条件。

  7. 推理阶段:在训练完成后,可以使用训练好的模型对新的图像进行目标检测。


🚀4.性能评价

🍀(1)优点

  • 结果:相对v1 (更快、mAP更高)
  • 正负样本:引入Anchor和使用K-means聚类,提高了Recall。
  • Backbone:DarkNet-19,降低了计算量(更快)。
  • Neck:引入特征融合模块(passthrouch),融合细粒度特征。
  • 检测头:多尺度训练提高模型能力,实现了速度和精度的权衡。
  • 小技巧:引入BN,加速网络收敛;约束输出范围,训练更稳定;

🍀(2)缺点

  • Backbone 可持续优化。
  • Neck 可持续优化。
  • 只是单个检测头,小目标识别还不太好。
  • 损失函数可持续优化

http://www.laogonggong.com/news/74591.html

相关文章:

  • 网页版传奇下载遵义网站seo
  • 成品网站是什么意思公司网站开发毕业设计
  • 藤县建设局网站什么公司做的网站好
  • 东莞网站建设培训网络营销的营销理念
  • 给个人网站做百度百科vps如果制作论坛网站
  • 网站自助搭建app开发公司长沙
  • 雄安企业网站建设c 网站开发
  • 东莞制作公司网站的公司lazada
  • 028网站建设网站主页制作
  • 网站维护方法餐饮网站界面
  • 卖东西的网站模板免费下载个性定制平台
  • 欧美 电台 网站模板4wordpress主题的网站模板
  • 做家教备课用什么网站广告推广软件
  • 海外贸易平台有哪些网站代码怎么优化
  • 色轮 网站seo怎么做
  • 网络营销导向网站建设的基础德清县小城镇建设网站
  • 上海营销型网站开发代驾公司注册需要什么条件
  • 连云港网站建设电话吾爱主题wordpress
  • 网站服务器地址查询方法wordpress手机cms
  • 网站维护费怎么做会计分录网站备案信息代码在哪里找
  • 宝安网站建设多少钱北京企业建设网站公司哪家好
  • 有做喜糖的网站吗网页制作公司专业
  • .net网站开发框架网页链接生成二维码
  • wordpress启用主题网站出错wordpress网址中文
  • 厦门市网站建设公司公司注册地址和经营地址不一样
  • 好的交互网站崇信县门户网站首页
  • 如何利用ftp上传网站网站建设品牌公司推荐
  • 珠海服务好的网站建设交互式网站
  • 创新的专业网站建设雄县做网站的
  • 保洁公司在哪个网站做推广比较好wordpress新闻发布时间